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Abstract

We present a new non-linear 2-D numerical trishear model that is capable of modeling both symmetrical and asymmetrical trishear zones

and a strain prediction approach based on the velocity field within the trishear zone. A simple relationship exists between the shape factor (r)

of the velocity field, the hanging wall apical angle, and footwall apical angle. The implication of this relationship is that when dealing with a

real deformed state cross-section, one can measure the hanging wall and footwall apical angles to determine the r value to specify the velocity

field within the trishear zone for either the forward modeling or restoration. The new trishear model can accurately reproduce the geometry of

two experimental clay models and an extensional fault-propagation fold from the Gulf of Suez. Predicted strain is greatest directly above the

fault tip and decreases with distance from the fault tip, as in the experimental models. Greater strain occurs in the hanging wall because of the

greater velocity gradient there, whereas the footwall is much less intensely deformed. Consequently, secondary faulting and fracturing, if

present, should be better developed along the fault tip line or in the hanging wall. The orientation of fractures or minor faults can be predicted

from the strain ellipses calculated from the trishear velocity field.

q 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Extensional fault-propagation folds commonly form as a

result of the upward propagation of faults into regions that

have been monoclinally flexed at the fault tips. Where the

rate of fault propagation is slow with respect to the rate of

fault displacement, a monocline will occur above the fault

tip (Ferrill et al., 2004). Evidence from well-exposed folds

with preserved growth strata (Gawthorpe et al., 1997), well

based 3-D subsurface mapping (Jin et al., 1998), and from

analog models (Withjack et al., 1990) and numerical models

(Patton and Fletcher, 1995; Hardy and McClay, 1999)

indicates that extensional fault-propagation folds form as

upward widening monoclinal zones of distributed defor-

mation above discrete faults at depth (Fig. 1). Extensional

fault-propagation folds have been recognized from many

areas of the world, e.g. the Rhine Graben (Laubscher, 1982),
0191-8141/$ - see front matter q 2005 Elsevier Ltd. All rights reserved.
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the North Sea (Withjack et al., 1989), the Gulf of Suez

(Gawthorpe et al., 1997), and the Gulf of Mexico basin

(Pashin et al., 2000). Due to the frequent occurrence of

hydrocarbons associated with them and in the underlying

fault blocks, extensional fault-propagation folds are receiv-

ing increasing attention in academic and industrial domains.

While the geometry of extensional fault-propagation folds is

reasonably well understood (Schlische, 1995; Janecke et al.,

1998), the kinematic linkage between deeper faulting and

shallower distributed deformation is a subject for further

exploration.

The trishear kinematic model was first proposed by

Erslev (1991) and Erslev and Rogers (1993). It was

designed to predict the geometry of fault-propagation

folds, which grow with changes both in bed thickness and

dip on the fold limbs. Trishear is the distributed shear in a

triangular zone, one apex of which is located at the tip of a

fault. Hardy and Ford (1997) expanded Erslev’s (1991)

initial trishear model by presenting a clear mathematical

formulation of the problem. They analyzed the effect of

variable propagation to slip ratios and illustrated growth

strata geometries associated with trishear fault-propagation

folds in compressional geological settings. Allmendinger

(1998) used Hardy and Ford’s (1997) numerical trishear
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Fig. 1. Extensional fault-propagation folds associated with slip along the underlying faults. (a) Schematic diagram illustrating basic features of an extensional

fold with a non-migrating fault tip. (b) Schematic diagram of an extensional fault-propagation fold. (c) Cross-section of extensional fault-propagation fold from

the Gulf of Suez (modified from Withjack et al., 1990). No vertical exaggeration. Details of bed geometry are shown where observed in outcrop. pCZ
Precambian basement, PKnZNubia sandstone, KumZinterbedded upper Cretaceous limestone and shale, KucZPaleocene and upper Cretaceous shale and

limestone, TeZEocene limestone. The shaded zone in (a) is the trishear deformation zone. f1Zhanging wall apical angle, f2Zfootwall apical angle, HWZ
hanging wall, FWZfootwall, ITBZinactive trishear boundary, ATBZactive trishear boundary. Note that the open circles in (b) and (c) represent the location

of the initial fault tip.
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model to further discuss the influence of variable trishear

parameters on the geometry of fault-propagation folds both

in growth and pre-growth strata. Hardy and McClay (1999)

applied the model to an experimental clay model made by

Withjack et al. (1990) and concluded that the trishear model

could accurately reproduce the geometry of extensional

fault-propagation folds. Recently, Zehnder and Allmendin-

ger (2000) proposed several velocity field models for a

trishear zone and suggested that the velocity field could be

expressed in a non-linear pattern.

In Erslev’s (1991) original model, the trishear zone was

fixed with respect to either the hanging wall or footwall of a

fault, which is called a hanging wall fixed or footwall fixed

trishear zone (Hardy and Ford, 1997). In this paper, we use

additional terms to further describe the geometric features

of extensional fault-propagation folds. The upward widen-

ing deformation zone of an extensional fault-propagation

fold is defined by a hanging wall trishear boundary and a
footwall trishear boundary, both of which are attached to the

underlying fault tip. Within these two boundaries is an area

where non-uniformly distributed shear deformation occurs

that is called the trishear zone (Fig. 1a). The hanging wall

trishear boundary and the footwall trishear boundary

attached to the currently active fault tip are called the

hanging wall active trishear boundary (ATB–HW) and

footwall active trishear boundary (ATB–FW), respectively

(Fig. 1a). As the displacement along the underlying fault

increases, material points within the hanging wall trishear

zone move continuously across the active trishear boundary.

The boundary between deformed and undeformed parts of

the hanging wall (Fig. 1a) is called the hanging wall inactive

trishear boundary (ITB–HW). If the fault tip does not

propagate during deformation, which is the case of footwall-

attached trishear (Fig. 1a), the footwall active trishear

boundary remains stationary and coincides with the initial

footwall trishear boundary, called the footwall inactive
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trishear boundary (ITB–FW). If, however, the fault

propagates during the deformation, the footwall active

trishear boundary will migrate upward along with the fault

tip and become separate from the ITB–FW (Fig. 1b and c).

Although the numerical trishear model has been

successful in modeling non-kink-band-style deformation

(Allmendinger, 1998; Hardy and McClay, 1999), there are

still problems with this model. First, experimental models

(Withjack et al., 1990) and natural examples (Withjack et

al., 1989; Hardy and McClay, 1999) suggest that the upward

widening deformed zone (the trishear zone) is usually not

symmetrical across the tip line of the underlying fault

(Fig. 1, f1sf2). This contradicts the predicted results from

the numerical trishear model by Hardy and Ford (1997)

using a linear velocity field method. It is evident that the

linear velocity field model is not sufficient to properly

predict or describe the general trishear deformation.

Therefore, a more general form of trishear velocity needs

to be formulated, and there is no need to limit those models

to linear velocity field. The piece-wise linear trishear model
Fig. 2. Geometry predicted for extensional fault-propagation folds using

Zehnder and Allmendinger’s (2000) method. (a) Asymmetrical trishear

model using piece-wise linear velocity field. f1Z498 and f2Z218. (b)

Symmetrical trishear model using non-linear velocity field. The velocity

field factor (r)Z3 and apical angle (f)Z608. ATBZactive trishear

boundary, ITBZinactive trishear boundary, HWZhanging wall, FWZ
footwall. The shaded layers are precut beds not involved in trishear

deformation.
proposed by Zehnder and Allmendinger (2000) avoids the

symmetry problem, but their predicted trishear folds have a

sharp kink-band like geometry within the trishear zone

along the tip line of the underlying fault (Fig. 2a). The non-

linear velocity field derived by Zehnder and Allmendinger

(2000) is still limited to symmetrical trishear geometry

(Fig. 2b).

In this study, we propose a new general velocity field for

the trishear model and a strain prediction method based on

the specified velocity field. We first discuss the velocity

distribution within the trishear zone in terms of a new

parameter that governs the shape of the velocity field. Then

we present numerical examples to show the importance of

the trishear parameters in determining the final geometry of

a structure. Finally, we apply the trishear model to predict

the geometry and the strain distribution from experimentally

deformed structures and a natural example from the Gulf of

Suez shown in Fig. 1b. We demonstrate the advantages of

the new model over the previous models and use strain to

predict the orientation and distribution of fractures during

progressive deformation following the approach of Zehnder

and Allmendinger (2000).
2. The general velocity field model in a trishear zone

The basic assumptions for the kinematic trishear model

discussed in this study are: (a) cross-sectional area is

conserved throughout deformation; (b) the trishear zone

may be symmetrical or asymmetrical with respect to the

fault tip line; (c) the velocity in any area is continuous unless

it is faulted. The velocity need not be linearly distributed

throughout the trishear zone, nor need it be piecewise linear

to achieve the asymmetry. In this paper, we employ an

explicit way for deriving a new non-linear velocity field in a

trishear zone, which is adapted from the approach of

Zehnder and Allmendinger (2000).

Fig. 3 illustrates the basic geometry of the trishear model

used for derivation of the general velocity field in the

trishear zone. The fault is shown as horizontal for

convenience. A triangular trishear zone lies at the tip of a

fault with hanging wall apical angle f1 and footwall apical

angle f2. The apical angle is fZf1Cf2. The velocity in

the hanging wall is Vo, and the velocity in the footwall is 0,

which means it is stationary. P is any point in the trishear

zone whose velocity is to be calculated. QR is a line passing

through P which is perpendicular to the fault plane. Q and R

are intersecting points of the line with lower and upper

boundaries of the trishear zone, respectively (Fig. 3).

The velocity field can be written in vector form as:

Vðx; yÞ Z Vxðx; yÞî CVyðx; yÞĵ; (1)

where x and y are parallel and perpendicular to the fault line

and î and ĵ are the unit vectors in the x, y directions. The line



Fig. 3. Geometry of the trishear model and the coordinate system used in the

text. The fault is shown as horizontal for convenience. Velocity in the

hanging wall is Vo. It decreases nonlinearly from Vo at the boundary of

trishear zone in the hanging wall to zero at the boundary in the footwall. f1

and f2, separated by the projected tip line of the fault, are the hanging wall

and footwall apical angles of the trishear zone and are not necessarily the

same. P(x,y) is a referenced point whose velocity is to be calculated within

the trishear zone.
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QR is the direction along which Vx of the velocity field is

varied in a certain way (linear, quadric, cubic, etc.).

The boundary conditions for the velocity field in the

trishear zone are: velocity at the boundary between the

trishear zone and the footwall is zero and the velocity is Vo

at the boundary between trishear zone and hanging wall.

That is:

Vx Z V0; Vy Z 0; on y Z x tanð41Þ;

Vx Z 0; Vy Z 0; on y ZKx tanð42Þ
(2)

The condition that area is preserved is equivalent to the

area being incompressible. In mathematical terms, the

divergence of the velocity field is zero (Mase and Mase,

1992):

divðVÞ Z
vVx

vx
C

vVy

vy
Z 0 (3)

Assuming that the decrease of Vx of P is a function of the

distance between PQ until it reaches point Q with zero

velocity, and has the following form:

Vx Z V0 1K
LPR

LQR

� �1=r

Z V0

yKm2x

ðm1Km2Þx

� �1=r

(4)

where LPR and LQR are the distance between points PR and

QR, respectively, m1Ztan f1, m2ZKtan f2, and r is a

parameter that governs how Vx varies. The problem is

therefore to find an explicit form of Vx in terms of V0 and the

location of point P(x,y).

Vy can be solved by integrating Vx and Eq. (3).
vVy

vy
ZK

vVx

vx

Z V0

y

rx

1

ðm1 Km2Þx

� �1=r

ðyKm2xÞðð1=rÞK1Þ (5)

which yields

Vy Z V0

y Crm2x

ðr C1Þx

� �
yKm2x

ðm1Km2Þx

� �1=r

CC (6)

The constant C can be found by applying the boundary

conditions (Eq. (2)). If a material point is located on the

footwall trishear boundary where yZm2x, it is clear from

Eq. (6) that

C Z 0 (7)

On the other hand, if a material point is located on the

hanging wall trishear boundary where yZm1x, Vy also

becomes 0. Apply this boundary condition to Eq. (6) to find

C ZK
m1 Crm2

ðr C1Þ
V0 (8)

From Eq. (7), it is clear that Eq. (8) becomes 0 as well for

any material points located on the footwall trishear

boundary. This yields the following important relationship:

m1 ZKrm2 (9)

Eq. (9) indicates that the velocity field in a trishear zone

can be determined by measuring the hanging wall and

footwall apical angles.

The final form of the velocity field in the trishear zone is

given below:

Vx Z V0

yKm2x

ðm1Km2Þx

� �1=r

(10.1)

Vy Z V0

y Crm2x

ðr C1Þx

� �
yKm2x

ðm1Km2Þx

� �1=r

(10.2)

or in vector form:

V Z V0

yKm2x

m1Km2

� �
x

 !1=r

i
!

CV0

y Crm2x

ðr C1Þx

� �
yKm2x

m1Km2

� �
x

 !1=r

j
!

(11)

with the constraint of Eq. (9).
3. Strain in the trishear zone

Once the velocity field is specified, the strain or strain

rate in the trishear zone can be determined from the velocity

field. Suppose the strain is infinitesimal, where the initial

referenced material points are displaced such that the

squares and products of the displacement may be neglected



G. Jin, R.H. Groshong / Journal of Structural Geology 28 (2006) 170–183174
(Jaeger and Cook, 1979; Means, 1990). If the velocity field

is specified by Eqs. (10.1), (10.2) or (11), then the strain

rate, _e, in the x and y directions can be expressed as:

_ex Z
vVx

vx
Z V0

m

rðm1Km2Þx

mKm2

ðm1Km2Þx

0
@

1
Aðð1=rÞK1Þ

_ey Z
vVy

vy
ZKV0

m

rðm1Km2Þx

mKm2

ðm1Km2Þx

0
@

1
Aðð1=rÞK1Þ

8>>>>>>><
>>>>>>>:

(12)

and the shear strain rate can be calculated as

_gxy Z
1

2

vVx

vy
C

vVy

vx

� �

Z
V0

2r

ð1Km2Þ

ðm1Km2Þx

mKm2

ðm1 Km2Þ

� �ðð1=rÞK1Þ

(13)

where mZtan(y/x) The direction (q) of the principal strain

rate with respect to the x direction can be determined using

(Jaeger and Cook, 1979):

tanð2qÞ Z
2 _gxy

_ex K _ey

(14)

For these directions, the elongation has maximum or

minimum values that define the principal axes of strain or
Fig. 4. The relationship between hanging wall and footwall apical angles

and r in the trishear zone. If rZ1, the hanging wall and footwall apical

angles are equal, which is the case of the linear velocity field described by

Hardy and Ford (1997). When r!1, the footwall apical angle is greater than

the hanging wall apical angle while it becomes the opposite when rO1.

Note in the cases when r does not equal 1, a linear change of f1 does not

result in a linear change of f2.
strain rate. The magnitudes of the principal strain rates are

given by Jaeger and Cook (1979) as:

_e1;2 Z
1

2
ð _ex K _eyÞG _g2

xy C
1

4
ð _ex K _eyÞ

� �1=2

(15)

where _e1 and _e2 represent the principal strain rates. The total

principal strains are calculated as the summation of strain

rates at each deformation step.
4. Implications of the shape factor r of the velocity field

The shape of the general velocity field described above is

determined by the value of r and is depicted in Fig. 4. If rZ1,

the linear velocity of Hardy and Ford (1997) is recovered.

The constraint of Eq. (9), f1Zf2, indicates that the trishear

zone has to be symmetrical with respect to the fault tip line.

The velocity linearly decreases with respect to the distance

from the hanging wall trishear boundary (Fig. 5).

The trishear zone is no longer symmetrical with respect

to the fault tip line if rs1. When rO1, m1OKm2, which

results in f1Of2 (Fig. 4). It is clear that more hanging wall

material is involved in the deformation. In the hanging wall

trishear domain, the velocity decreases very slowly. In the

footwall domain, the velocity decreases rapidly (Fig. 5).

This indicates that the strain rate is much higher in the

footwall trishear domain than that in the hanging wall

domain. When r!1 and f1!f2, the trishear zone is not

symmetrical, and the velocity change and the associated

strain rate are opposite to the case of rO1. The quantitative

relationship between r and the strain or strain rate will be

discussed later.

Different combinations of values of f1, f2, and r define

the nature of the deformation. If either f1 or f2 is close to

zero, the other should also be close to zero if r is not too

large. In this case, the trishear zone is very narrow, the

hanging wall is deformed by rigid body translation and the

footwall remains stationary. Thus, deformation by block

faulting is simulated. When f1 is close to zero and r is very

small, then f2 could be large enough (e.g. 20–308) so that

the trishear zone is extremely asymmetrical. With increas-

ing displacement, an upward widening monocline will be

produced that is confined to the footwall trishear zone.

When f2 is close to zero and r is very large, then f1 could be

large enough to produce an extremely asymmetrical trishear

zone, with a monocline developed in the hanging wall. If

rZN, the velocity within the trishear zone is constant and

material in the trishear zone will move at the same rate as

the hanging wall, which implies that the deformation tends

to be brittle faulting.

Eq. (9) further reveals that r, f1 and f2 are not

independent parameters specifying the velocity field. Only

two of them are independent while the third is determined

from the other two. The implication of this is that when

dealing with a real deformed state cross-section, we can



Fig. 5. The changes of velocity with relation to r in the trishear zone. When rZ1, the velocity decreases linearly from the hanging wall to the footwall, which is

the linear field discussed by Hardy and Ford (1997). When r!1, the velocity decreases rapidly in the hanging wall, indicating most displacement will occur in

this region. When rO1, the decrease of velocity occurs mainly in the footwall.
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measure f1 and f2 to determine the r value for either the

forward modeling or restoration of the structure, which

provides a practical and convenient way to specify the

trishear parameters.
5. Influence of apical angle and p/s ratio

In order to discuss how the different apical angles and p/s

ratios influence the final geometry of fault-propagation folds

predicted by the general trishear model, we generate model

runs with variable apical angles and p/s ratios. In each run,

only one of those two parameters is changed, allowing the

net effect of each parameter to be seen separately.

5.1. Variable apical angles

Fig. 6 shows the effect of different apical angles of the

trishear zone on fold geometry. The apical angles used for

generating the fault-propagation folds are 20, 40, and 608.

The fault does not propagate during deformation (p/sZ0),

and the fault tip is thus fixed to the footwall. Total slip along

the fault is the same, and rZ0.8 for all three cases.

The width of the fault-propagation fold is directly

controlled by the apical angle of the trishear model

(Fig. 6). With the increase of the apical angle, the

deformation zone becomes wider and more open. With a

small apical angle, bedding in the fault-propagation folds

undergoes more rotation than bedding in folds with greater

apical angles at the same stratigraphic level (Fig. 6a–c).

Beds are thinned in the fold, with the most thinning
occurring in the fault-propagation fold with smallest apical

angle. More rotation of the fold limb and thinning of

bedding are required to accommodate the deformation

caused by displacement along the underlying fault as the

width of the fold decreases.
5.2. Variable p/s ratio

Three fault-propagation folds with different p/s ratios are

generated to investigate the direct influence of the p/s ratio

(Fig. 7). The p/s ratio is the only parameter changed; all the

other parameters are the same for all the fault-propagation

folds. The apical angle is 608, rZ0.8, and the dip of fault is

608. With increasing p/s ratio, the fault propagates upward

faster and results in greater separation between the active

trishear boundary and the inactive trishear boundary, which

in turn results in less folding both in the hanging wall and

the footwall (Fig. 7a–c). This is because once the fault cuts

through the overlying beds, it stops the internal deformation

in those beds and deformation becomes rigid-body

translation. When the p/s ratio is large enough, the

deformation is essentially rigid-body translation and there

is no significant internal deformation within the trishear

zone.

The p/s ratios also have great impact on the magnitudes

of the strain in the trishear zone. The greatest strain is close

to the fault tip in Fig. 7a for which the p/s ratio is zero. As

the p/s ratio increases, beds have less time to deform before

being cut by the fault and thus result in less strain. The strain

ellipses within the area bounded by ITBs and ATBs in the

model with a p/s ratio of 4.0 (Fig. 7c) are less flattened than



Fig. 6. Effect of different apical angles of the trishear zone on fold

geometries. Apical angles are 20, 40, and 608 in (a), (b), and (c),

respectively. In all three cases, the dip of fault is 608, rZ0.8, p/sZ0.0, and

the displacements along the faults are the same. ATBZactive trishear

boundary, ITBZinactive trishear boundary, HWZhanging wall, FWZ
footwall.

Fig. 7. The effects of different p/s ratios on the fold geometry and strain in

the trishear zone. In all three cases, the fault dipZ608 and rZ0.8. The p/s

ratios are 0.0, 2.0, and 4.0 for (a), (b), and (c), respectively. The total slip

along the faults is the same in all three cases. The line within the strain

ellipses is the maximum extension direction. ATBZactive trishear

boundary, ITBZinactive trishear boundary, HWZhanging wall, FWZ
footwall.
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those in the model with a p/s ratio of 0.0 (Fig. 7a and c). Less

widespread secondary faulting or fracturing will be

expected in deformation with greater p/s ratios.
6. Applications

In order to test how well the new trishear model predicts

the geometry of extensional fault-propagation folds, we

apply the technique to experimental folds developed above

a 608 dipping normal fault and a vertical fault. We also

apply this model to an extensional fault-propagation fold

from the Gulf of Suez.
6.1. Experimental clay models

The experimental analog for a sedimentary sequence in

the models is ball clay, which consists of approximately half
clay-size quartz and half illite. The water content of the clay

is adjusted until the first fault would appear at 10–15% strain

in a pure shear experiment. On the side of the model,

shallow horizontal grooves have been cut to provide

bedding markers, and circles are marked to show strain.

The basement consists of rigid wood blocks that can be

displaced along a 608 normal fault (Fig. 8a) and a vertical

fault (Fig. 8b). Models were photographed after every

0.5 cm of throw on the basement fault.

Experiment 09/14/78 (Fig. 9) is of a drape fold over a 608

dipping normal fault. The predicted geometry from the

trishear model is superimposed on the images. The initial

trishear boundaries (ITBs) for both the hanging wall and the

footwall are determined from where the bed markers return

to their regional elevations. The f1 and f2 measured from

the ITBs are 32 and 388, respectively (Fig. 9a), which

defines rZ0.8 and f (total apical angle of the trishear



Fig. 8. Photos showing the pre-deformation stage of two experimental clay models in this study. Thin dashed lines are the extension of fault tip lines. Pre-cut

faults are marked by thick black lines with arrows indicating the sense of movement. (a) Model 09/14/78, the basement fault dips 608 to the left. (b) Model

01/30/78, the fault is vertical.
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zone)Z708. Secondary faults with visible displacements

began to develop after 1.0 cm of throw and are intensified in

the final stage of the deformation where the throw is 2.0 cm.

Since the model shows that the fault is propagating upward

into the clay with a steeper dip in later stages of deformation,

we use a p/s ratio of 4.0 to propagate the fault from 1.0 to

1.5 cm and 3.0 from 1.5 to 2.0 cm throw, respectively.

The predicted geometry for the fault-propagation fold

matches well with the experimental model at all stages of

displacement (Fig. 9). Many structural features of the analog

model are accurately reproduced by the trishear model. In

particular, the evolution of the monocline and the hanging wall

syncline that develop adjacent to the fault are very similar to

those predicted with the trishear model. The upward widening

of the hanging wall fault-propagation fold is also reproduced.

It can also be seen that the bed thickness in the trishear zone is

less than outside the zone in both the analog model and the

trishear model. The amount of thinning is not uniform

throughout the trishear zone. The beds in the hanging wall

trishear domain have experienced more thinning than those

in the footwall domain. This is because the velocity field

specified by the parameters suggests that the greater velocity
gradient in the hanging wall results in more shear deformation

in that domain than in the footwall domain. Because there is

more area in the footwall involved in the deformation, the

velocity gradient is fairly small and hence little reduction in

bed thickness is produced.

The amount of strain and its distribution are also well

predicted by the trishear model (Figs. 9 and 10). The strain

ellipses in the hanging wall fault-propagation fold are more

deformed than those in the footwall. This is the result of the

greater velocity gradient in the hanging wall trishear

domain. The orientation of the maximum principal stretch

in Fig. 9 becomes progressively closer to parallel with the

bedding in the monocline with the increase of the

displacement. From the hanging wall trishear boundary to

the footwall boundary, the orientation of the maximum

elongation becomes progressively more oblique to bedding.

The orientations of minor faults are well predicted by

the trishear model (Fig. 10). We used the criterion of

Allmendinger (1998), that the orientations of the lines of no

finite elongation (LNFE) in the strain ellipses predict the

orientation of minor faults. The LNFEs in the kinematic

model mimic remarkably well the observed minor fault



Fig. 9. Sequential deformation and trishear modeling of experiment 09/14/78. The uninterpreted images are shown on the left and the trishear models are

superimposed on the right. The basement fault begins to propagate up section after 1.0 cm throw. Strain ellipses predicted by the trishear model are shown, with

a light line and a dark line representing the principal directions of elongation and shortening, respectively. The throws are 0.5, 1.0, 1.5, and 2.0 cm for (a), (b),

(c), and (d), respectively. The dashed rectangle in (d) is the area shown in Fig. 10. ATBZactive trishear boundary, ITBZinactive trishear boundary, HWZ
hanging wall, FWZfootwall.
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patterns in the clay model. Note that the minor faults are

well developed within the area enclosed by the contour line

with axial ratio of 0.95 (Fig. 10b), which indicates approxi-

mately 10% shortening along the minimum principal strain

axis. The results indicate that the orientations of LNFEs are

good indicators of the orientation of minor faults.

Experiment 01/30/78 is of a drape fold formed by

differential vertical movement of a basement fault (Fig. 11).

The deformed geometry is highly asymmetrical with a

hanging wall (down-thrown zone) apical angle of 28.28 and

a footwall (up-thrown zone) apical angle of 41.88. The

modeling parameters for the trishear model are apical

angleZ708, rZ0.6, and p/sZ0.0 for 0.5 and 1.0 cm throws.
Again, the experiment is modeled at 0.5 cm intervals of

throw. The basement fault propagates upsection into the

clay after 1.5 cm throw. The propagation of the fault is

modeled by a p/s ratio of 3.0 between 1.5 and 2.0 cm throws.

At 2.0 cm throw there is reverse faulting in the hanging wall

close to the master fault, which might be an edge effect. The

predicted geometry of an upward widening monocline fits

well the structure in the clay model. Thinning of beds occurs

mostly directly above the fault tip and along the extension of

the fault tip line. The rotation of strain axes is much more

dramatic in this model because the vertical fault introduces a

greater downward component of displacement in the

hanging wall domain.



Fig. 10. Enlargement of final stage of normal fault experiment 09/14/78. Fault orientation is predicted using lines of no finite elongation (LNFEs) of strain

ellipses calculated from the trishear velocity field. (a) Line drawings of small faults from the deformed clay model with the calculated strain ellipses

superimposed on them. (b) LNFFs of strain ellipses and the faults copied from (a). Two sets of LNFEs are marked by a longer line and a shorter line in each

ellipse. The orientation of longer lines of LNFEs matches those of faults from the clay model. The fractures are well developed within the area surrounded by

the axial ratio 0.95 contour line indicated in (b).
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6.2. The Gulf of Suez

The Gulf of Suez has long been recognized as having

extensional fault-propagation folds formed by the upward

propagation of basement faults (Robson, 1971; Garfunkel

and Ronnevik, 1986; Withjack et al., 1990). Continental

rifting began in the Suez area during the Oligocene and

continues today. During rifting, steeply dipping normal

faults formed within the Precambrian igneous–metamorphic

basement, and extensional forced folds developed within the

overlying Paleozoic through Cenozoic strata (Figs. 1b and

12). See Withjack et al. (1990), Garfunkel and Ronnevik

(1986), and Coffield and Schamel (1989) for further details

about the regional geological setting and structures of the

area.

We apply the trishear technique to model the geometry of

the cross-section (Fig. 12) from the Gulf of Suez reported by

Withjack et al. (1990). The hanging wall and footwall apical

angles are 27 and 238 as determined by measurement from

the cross-section (Fig. 12). The value r for the velocity field

is thus 1.2. Because the regionals from both the hanging

wall and footwall in the original cross-section are tilted to

the east, they are restored to horizontal for modeling

purposes by rotating the cross-section about 58 counter-

clockwise. The initial fault tip was located at the top of the

basement, because the inactive trishear boundaries termi-

nate at the fault cutoffs of the top basement. During the

deformation, the basement fault is interpreted to have

continuously propagated upsection with the same dip.

The general geometric features of the deformed structure

in the cross-section are predicted by the trishear model
(Fig. 12). The shape of bedding in the hanging wall syncline

and the footwall anticline closely matched the predicted

structure. The predicted structure for the Paleozoic and

Cenozoic strata provides detailed information about the slip

and the locations of stratigraphic boundaries, especially for

those beds that were eroded away in the footwall. The

trishear model successfully predicts the stratigraphic

boundaries and dip of bedding at the level of exposure on

the original cross-section where detailed outcrops are

available for direct validation of the model. A very slight

mismatch appears at the top of the Precambrian basement in

the footwall. However, because the geometry of the strata at

that level is poorly controlled by the data available

(Withjack et al., 1990), this does not invalidate the

applicability of the trishear model.

An important feature in Fig. 12 is that the beds in the

hanging wall do not dip progressively steeper from the

younger units to the older ones. From experimental models

and our previous discussion on the trishear models,

progressive downward steepening of beds results from an

underlying fault that does not propagate or that propagates

at a constant rate. To prevent a downward increase in dip,

two different p/s ratios must be used in trishear modeling.

The fault propagates at a p/s ratio of 2.0 in the Paleozoic/

Upper Cretaceous Nubia sandstone (PKn) followed by a

reduced p/s ratio of 1.2 as the fault propagates across the

higher formations that consist of interbedded clastics and

carbonates. This could be explained if the sandstone is more

brittle, and the interbedded limestone and shale can more

readily fold, hence the fault propagates faster in the

sandstones than it does in the mixed layered sequence.



Fig. 11. Sequential deformation and trishear modeling of vertical fault experiment 01/30/78. The uninterpreted images are shown on the left and the trishear

models superimposed on the right. The basement fault begins to propagate after 1.5 cm of throw. Strain ellipses predicted by the trishear model are shown.

Throws are 0.5, 1.0, 1.5, and 2.0 cm for (a), (b), (c), and (d), respectively. ATBZactive trishear boundary, ITBZinactive trishear boundary, HWZhanging

wall, FWZfootwall.
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7. Discussion

The non-linear trishear model proposed in this paper is

superior to the linear model in predicting the geometry of

trishear structures with high bedding curvature. The shape

factor (r) of the velocity field dictates the bedding curvature.

To illustrate this, the folds predicted using a linear velocity

field identical to Hardy and Ford’s (1997) model are applied

to the previous experimental models in Fig. 13. The apical

angles and p/s ratios are the same as those in our model. It

can be seen that the linear velocity model predicts the

trishear geometry fairly well for the drape over the normal

fault, whereas there are significant mismatches in the drape
over the vertical fault. The mismatch is best described by the

difference between the high bedding curvature in the clay

model and the lower bedding curvature from the linear

trishear model. The linear velocity field produces a

relatively low velocity gradient from the hanging wall

trishear domain to the footwall domain which in turn results

in a lower predicted bedding curvature than does the non-

linear field (rZ0.6, Fig. 11).

Generally, smaller values of r produce smoother and

greater curvatures. When r is small, velocity decreases

rapidly in the hanging wall and thus creates a large velocity

gradient. In the footwall, both the velocity and its gradient

are much smaller. Therefore, the displacement caused by



Fig. 12. Trishear predicted geometry and strain of an extensional fault-propagation fold from the Gulf of Suez based on the cross-section from Withjack et al.

(1990). Before modeling, the regionals in both the hanging wall and footwall are restored to horizontal by rotating the original cross section 58. The modeling

parameters are measured from the deformed cross-section as: hanging wall apical angleZ278, footwall apical angleZ238 and the resulting rZ1.2. The fault

propagates upsection with p/sZ2.0 in the Pkn formation and p/sZ1.2 in the younger units. See Fig. 1 for explanation of original cross-section.
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fault slip is mainly accommodated by folding in the hanging

wall. The highest curvature is usually present in the hanging

wall accompanying the greatest thinning of bedding in

extensional settings. A much wider zone is involved in

deformation in the footwall, and this deformation is

characterized by small bedding curvature and slight bedding

thinning. If a geological structure is reproduced by a trishear

model with a small velocity shape factor (say, rZ0.5), it

probably indicates that the ductility of the rock involved in

the deformation is high and less secondary faulting will be

present.

The relationship between the hanging wall apical angle,

the footwall apical angle, and r in the trishear model

provides a convenient and approximate estimation of the

velocity field in the forward modeling of natural and

experimental structures. One of the problems associated

with the previous trishear models is the fact that the values

of the modeling parameters are hard to determine before
applying them to a real structure. The modeling has to be

accomplished by a trial-and-error method to determine the

final parameters. By using the relationship discussed in this

paper, one can easily measure the hanging wall and footwall

apical angles from a deformed structure and the velocity

field in a trishear zone is automatically determined. One can

therefore use these initial values for the trishear parameters

to model the actual structures without the need for

generating a broad array of possible values.

The directions of secondary faults can be predicted from

the strain ellipses calculated from the trishear model.

Because the strain of rocks can be accommodated in a

variety of ways, no individual strain indicators will

necessarily match the strain ellipses predicted with the

trishear forward models. The most reliable measure of strain

in the structure is the change in bedding thickness itself

(Allmendinger, 1998). If a trishear forward model matches

the thickness changes throughout a real structure, then the



Fig. 13. Trishear predictions of experimental models using Hardy and Ford’s (1997) linear velocity field. (a) Experiment 09/14/78, apical angleZ708. (b)

Experiment 01/30/78, apical angleZ758. Fault throw is 2.0 cm for each model. Thin black lines are predicted bedding, thin white lines are predicted trishear

boundaries. Arrows indicate the locations of greatest bedding mismatch.
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predicted strain must be consistent with the bulk strain in the

real structure. Allmendinger (1998) and Watterson (1999)

suggested that failure along zero extension directions rather

than stress ellipses can be applied to natural structures in

rocks. The zero extension directions are identical to the direc-

tion of LNFEs of strain ellipses. The orientation and popu-

lation of secondary faults in the models can be predicted by

strain ellipses using LNFEs with reasonable confidence.
8. Conclusions

The trishear model is a powerful and useful tool for

modeling extensional fault-propagation structures. It can

produce a wide range of fault-related, upward-widening

structures that are commonly observed in extensional

settings. The velocity field within a trishear zone derived

in this paper can be used to model asymmetrical fault-

propagation folds, which makes it more applicable to real

structures than previous models. The shape factor of the

velocity field dictates how the velocity decreases from the
hanging wall to the footwall and hence controls the curva-

ture and smoothness of the deformed bedding structure. The

strength of the new trishear model proposed here is that

the velocity field can be easily specified by measuring the

hanging wall and footwall apical angles and thus one can

immediately begin the process of modeling a real structure.

The p/s ratio has a significant impact on the geometry of

bedding and the strain within trishear folds. A greater p/s

ratio results in faster upward fault propagation and hence

produces narrower and less deformed fault-propagation

folds. Beds will stop shearing and rotation and will be

displaced by rigid body translation if a fault cuts through

them during upward propagation. Typically, the strain of

beds within a trishear zone becomes smaller as the p/s ratio

increases.

The strain prediction model based on the trishear velocity

field provides an explicit estimation of the magnitude and

orientation of the strain ellipses throughout a trishear zone.

The lines of no finite elongation of the strain distribution are

good predictors of the orientations of second-order faults as

proposed by Allmendinger (1998).
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